
CS166 Handout 08
Spring 2018 April 24, 2018

Problem Set 3: Balanced Trees

This problem set explores red/black trees, augmented search trees, data structure isometries, and
some of the more advanced operations on binary search trees. By the time you've fnished working
through this problem set, you'll have a much richer feeling for just how powerful this particular fam-
ily of techniques can be and how they can be used to design beautiful and fast data structures.

Due Thursday, May 3 at 2:30PM.

2 / 4

Problem One: Red/Black and AVL Trees (6 Points)
AVL trees, developed in 1962, were the frst class of balanced binary search
trees to be invented. They’re named after their inventors Адельсо́н-Ве́льский
and Ла́ндис (Adelson-Velsky and Landis).

A binary tree is an AVL tree if either (1) the tree is empty or (2) the left and
right children of the root are AVL trees and the heights of the left and right
subtrees difer by at most one. As a reminder, the empty tree has height -1,
and the height of a nonempty tree whose root’s left child has height h₁ and
root’s right child has height h₂ is 1 + max(h₁, h₂). A sample AVL tree is shown
to the right; its nodes are tagged with their heights.

This problem explores red/black trees, AVL trees, and the connections between them. Download the
starter fles from

/usr/class/cs166/assignments/ps3

and implement the functions described in trees.c. To receive full credit, your code should compile with
no warnings and should not have any memory errors. We'll test your code on the myth cluster. There’s in-
formation about how to run the test driver in the README fle.

i. Implement a function

bool is_avl_tree(const struct Node* root);

that takes as input a pointer to the root of a tree, then returns whether it’s an AVL tree. Your func-
tion should run in time O(n), where n is the number of nodes in the tree.

ii. Implement a function

bool is_red_black_tree(const struct Node* root);

that takes as input a pointer to the root of a tree, then returns whether it’s a red/black tree. Your
function should run in time O(n), where n is the number of nodes in the tree.

It turns out that all AVL trees can be colored to meet the red/black tree requirements, though the reverse
isn’t true. This means that AVL trees have tighter structural properties than red/black trees. Lookups in
AVL trees are faster than in red/black trees, though insertions and deletions are slower.

iii. Implement a function

void color_avl_tree(struct Node* root);

that takes as input a pointer to the root of an AVL tree, then colors the nodes in that tree so that it
obeys all the red/black tree invariants. Your function should run in time O(n), where n is the num-
ber of nodes in the tree.

The last part of this problem requires some creative insights on your part, but doesn’t involve writing all
that much code. Before tackling it, we recommend drawing out some sample AVL trees and trying to see
if you can spot a pattern. You may even want to try proving, inductively, that all AVL trees are red/black
trees; the same insights that would lead to a proof here also will give you a beautiful recursive algorithm.

Problem Two: Range Excision (2 Points)
Design and describe an algorithm that, given a red/black tree T and two values k₁ and k₂, deletes all keys
between k₁ and k₂, inclusive, that are in T. Your algorithm should run in time O(log n + z), where n is the
number of nodes in T and z is the number of elements deleted. You should assume that it’s your responsi-
bility to free the memory for the deleted elements and that deallocating a node takes time O(1).

3 / 4

Problem Three: Dynamic Prefx Parities (8 Points)
Consider the following problem, called the dynamic prefi parity problem. Your task is to design a data
structure that logically represents an array of n bits, each initially zero, and supports the following opera-
tions as efficiently as possible:

• initialize(n), which creates a new data structure for an array of n bits, all initially 0;

• ds.flip(i), which fips the ith bit; and

• ds.prefix-parity(i), which returns the parity of the subarray from index 0 to index i, inclusive.
(The parity of a subarray is zero if the subarray contains an even number of 1 bits and is one if it
contains an odd number of 1 bits. Equivalently, the parity of a subarray is the logical XOR of all
the bits in that array).

It's possible to solve this problem with initialize taking O(n) time such that flip runs in time O(1)
and prefix-parity runs in time O(n) or vice-versa (do you see how?), but it’s possible to get excellent
runtimes for both flip and prefix-parity by being more creative with the approach.

i. Let k ≥ 2 be an arbitrary natural number. Design a data structure that solves the prefx parity
problem such that

• initialize(n) takes time O(n),

• ds.flip(i) takes time O(logk n), and

• ds.prefix-parity(i) takes time O(k logk n).

As a hint, start by using augmented binary trees to solve this problem, then see if you can general-
ize your answer to use augmented multiway trees instead.

In the course of solving part (i) of this problem, you essentially reduced the large problem of “solve dy-
namic prefx parity for an array of size n” to “solve dynamic prefx parity for a bunch of smaller arrays of
some smaller size.”* That sounds a lot like what we did in the Fischer-Heun RMQ data structure, which
turned the larger problem of “solve RMQ on an array of size n” into “solve RMQ on a bunch of arrays of
a smaller size.” And just as we used a Four Russians speedup to build a fast solution to RMQ, you can use
a Four Russians speedup to boost the performance of your structure from part (i).

ii. Modify your data structure from part (i) of this problem so that

• initialize(n) takes time O(n),

• ds.flip(i) takes time O(log n / log log n), and

• ds.prefix-parity(i) takes time O(log n / log log n).

Some hints on part (ii) of this problem:

• Remember that logk b = log b / log k thanks to the change-of-basis formula.

• Think about precomputing a lookup table of all possible array/query pairs for sufficiently small ar-
rays. How might that change how you do prefix-parity queries?

• An array of bits can gives an integer that can be used as an index in an array-based lookup table.

• Be precise with your choice of block size. Constant factors matter!

* If you didn't notice that – or if you're having trouble with part (i) of this problem – consider this a free hint from your
friendly course staf! �

4 / 4

Problem Four: Deterministic Skiplists (8 Points)
Although we've spent a lot of time talking about balanced trees, they are not the only data structure we
can use to implement a sorted dictionary. Another popular option is the skiplist, a data structure consist-
ing of a collection of nodes with several diferent linked lists threaded through them.

Before attempting this problem, you'll need to familiarize yourself with how a skiplist operates. We rec-
ommend a combination of reading over the Wikipedia entry on skiplists and the original paper “Skip
Lists: A Probabilistic Alternative to Balanced Trees” by William Pugh (available on the course website).
You don't need to dive too deep into the runtime analysis of skiplists, but you do need to understand how
to search a skiplist and the normal (randomized) algorithm for performing insertions.

The original version of the skiplist introduced in Pugh's paper, as suggested by the title, is probabilistic
and gives expected O(log n) performance on each of the underlying operations. In this problem, you'll use
an isometry between multiway trees and skiplists to develop a fully-deterministic skiplist data structure
that supports all major operations in worst-case time O(log n).

i. There is a beautiful isometry between multiway trees and skiplists. Describe how to encode a
skiplist as a multiway tree and a multiway tree as a skiplist. Include illustrations as appropriate.

To design a deterministic skiplist supporting insertions, deletions, and lookups in time O(log n) each, we
will enforce that the skiplist always is an isometry of a 2-3-4 tree.

ii. Using the structural rules for 2-3-4 trees and the isometry between multiway trees and skiplists
you noted in part (i) of this problem, come up with a set of structural requirements that must hold
for any skip list that happens to be the isometry of a 2-3-4 tree. To do so, go through each of the
structural requirements required of a 2-3-4 tree and determine what efect they will have on the
shape of a skiplist that's an isometry of a 2-3-4 tree.

Going forward, we'll call a skiplist that obeys the rules you came up with in part (ii) a 1-2-3 skiplist.

iii. Briefy explain why a lookup on a 1-2-3 skiplist takes worst-case O(log n) time.

iv. Based on the isometry you found in part (i) and the rules you developed in part (ii) of this prob-
lem, design a deterministic, (optionally amortized) O(log n)-time algorithm for inserting a new el-
ement into a 1-2-3 skiplist. Demonstrate your algorithm by showing the efect of inserting the
value 8 into the skiplist given below:

1 3 5 7 9 11 13 15 17 19

nil

Congrats! You've just used an isometry to design your own data structure! If you had fun with this, you're
welcome to continue to use this isometry to fgure out how to delete from a 1-2-3 skiplist or how to im-
plement split or join on 1-2-3 skiplists as well.

